A Categorical Genealogy for the Congruence Distributive Property

نویسنده

  • DOMINIQUE BOURN
چکیده

In the context of Mal’cev categories, a left exact root for the congruence distributive property is given and investigated, namely the property that there is no non trivial internal group inside the fibres of the fibration of pointed objects. Indeed, when moreover the basic category C is Barr exact, the two previous properties are shown to be equivalent.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributive lattices with strong endomorphism kernel property as direct sums

Unbounded distributive lattices which have strong endomorphism kernel property (SEKP) introduced by Blyth and Silva in [3] were fully characterized in [11] using Priestley duality (see Theorem  2.8}). We shall determine the structure of special elements (which are introduced after  Theorem 2.8 under the name strong elements) and show that these lattices can be considered as a direct product of ...

متن کامل

A History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids

This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...

متن کامل

A Subalgebra Intersection Property for Congruence Distributive Varieties

We prove that if a finite algebra A generates a congruence distributive variety then the subalgebras of the powers of A satisfy a certain kind of intersection property that fails for finite idempotent algebras that locally exhibit affine or unary behaviour. We demonstrate a connection between this property and the constraint satisfaction problem.

متن کامل

The Structure of Pseudocomplemented Distributive Lattices. Ii: Congruence Extension and Amalgamation

This paper continues the examination of the structure of pseudocomplemented distributive lattices. First, the Congruence Extension Property is proved. This is then applied to examine properties of the equational classes ¿Sn, — lá«So), which is a complete list of all the equational classes of pseudocomplemented distributive lattices (see Part I). The standard semigroups (i.e., the semigroup gene...

متن کامل

On Glivenko Congruence of a 0-Distributive Nearlattice

In this paper the authors have studied the Glivenko congruence R in a 0-distributive nearlattice S defined by " () R b a ≡ if and only if 0 = ∧ x a is equivalent to 0 = ∧ x b for each S x ∈ ". They have shown that the quotient nearlattice R S is weakly complemented. Moreover, R S is distributive if and only if S is 0-distributive. They also proved that every Sectionally complemented nearlattice...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001